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This paper is devoted to an improvement of the time-delayed quasi-steady model for the
prediction of the movement-induced vibrations of tubes mounted in tandem or in an in-line
bundle. The improvement lies in the physical interpretation and calculation of the time lag
which is based on measured steady force coe$cients. In order to calculate the time lag, a mean
convection velocity between cylinders is estimated at each time step. A linear analysis of the
present model gives a critical velocity which is in good agreement with an unsteady experiment
found in the literature. Moreover, limit-cycle amplitudes are relatively well predicted and show
that instability is triggered by the time lag, whereas amplitude is governed by nonlinear
aerodynamic damping as for a Van der Pol oscillator. ( 1999 Academic Press
1. INTRODUCTION

FLOW-INDUCED VIBRATIONS of cylinders mounted in bundles is an important engineering
problem in many industrial "elds. Actually, one can "nd many di!erent situations where
such vibrations may occur when the cylinders are subjected to cross-#ow. Examples are the
e!ect of wind on in-line chimney stacks, on electric power-line bundles and on the cables of
suspended bridges, or the e!ect of sea currents on o!shore structures and on risers, and also
the e!ect of con"ned and complex #ows in reactors of nuclear power plants and in
conventional heat exchangers.

Two kinds of physical phenomena are classically found: the vortex-shedding excitation
due to the so-called BeH nard}Karman street, and the motion-induced vibrations often
denoted as galloping, wake galloping or interference galloping, according to the aero-
hydrodynamic con"guration of the problem. This paper is concerned with the second kind
of instability, without any interaction with the "rst.

Bokaian & Geoola (1984) carried out many experiments with simpli"ed con"gurations
of two cylinders subjected to cross-#ow: some typical amplitudes of oscillation of
the leeward cylinder are given in Figure 1 for the case of a tandem arrangement and with
the windward cylinder "xed. The set-up did not allow oscillations in the longitudinal
direction. Both types of instability are present. Though for large spacing ratios (¸/D) one
can see that the two phenomena are not coupled, this is not true for cylinders that are close.
When the cylinders are closer than the case shown in "gure, the phenomena are completely
merged.

From an engineering point of view, it is easy to identify the risk of vortex-induced
instability because it is mainly governed by a resonance e!ect between the bending
frequency of the cylinder and the frequency of vortex shedding. The quantitative prediction
of the oscillations are nevertheless more complex because of the lock-in problem.
0889}9746/99/040291#17 $30.00 ( 1999 Academic Press



Figure 1. Typical cross-#ow response of the leeward cylinder of two tubes in a tandem arrangement.
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Concering motion-induced oscillations, however, the identi"cation of the risk of instabil-
ity remains unresolved with simpli"ed methods. However, many models have been de-
veloped over the years and some of them have now became classical.

1.1. SHORT REVIEW OF CLASSICAL MODELS

In most cases, cylinders are free to vibrate transversely in their two coordinate directions, in
#ow (x) and cross-#ow (y), representing two degrees of freedom (DOF). The pioneering
work of Theodorsen (Fung 1955) and KuK ssner was the study of the problem of the
sinusoidal torsion and bending oscillations of a wing pro"le. A similar model adapted to the
wake galloping problem of electric power lines was suggested by Simpson and is reported in
Simiu & Scanlan (1986). This model can be written as
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where the structural sti!ness and damping are k and c, respectively, for each degree of
freedom and their coupling. Simpson's model calculates the coe$cients A

i
and B

i
(i"1}4)

by using the static aerodynamic coe$cients of the leeward cylinder and the mean velocity in
the wake of the windward cylinder. It is a pure quasi-steady theory, and comparison with
experiments is satisfactory for a staggered con"guration and a spacing ratio (¸/D) greater
than 5.

The model is linear and can only detect the boundaries of the stability region. It has
common points with Theodorsen's model, even if the problems and the degrees of freedom
are di!erent. Indeed, Theodorsen used an unsteady potential #ow theory for the calculation
of the coe$cients in the aeroelastic force model. In the 1970s, Scanlan (Simiu & Scanlan
1986) introduced the #utter derivatives model for studying bridge deck sections. These
derivatives are similar to the previous coe$cients and are estimated through unsteady tests
in wind tunnel.

A number of other authors have developed di!erent methods for predicting galloping in
arrays of cylinders. Many of them have based their models on the use of unsteady
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coe$cients obtained through unsteady wind tunnel experiments. Recently, Chabart &
Lilien (1997) carried out a large number of tests for electric power lines with a view to
numerical code validation and also more practical applications such as the design of control
system.

Numerical modelling represents an alternative to unsteady wind tunnel testing. The work
of Blazik-Borowa & Flaga (1997) is an interesting example of this, because the authors
studied the e!ects of turbulence intensity and Scruton number with a nonlinear quasi-
steady model of their own. Also, Kern & Maitz (1997) derived a nonlinear analysis of
a conventional quasi-steady model with the help of the normal form theory.

1.2. INTRODUCTION TO TIME DELAYED QUASI-STEADY MODEL

The above-mentioned researchers made the assumption that the time lag, i.e. the delay
between aeroelastic force and body displacement, is negligible. However, it has been
reported by many other authors that, for certain con"gurations, the time lag cannot be
neglected because this delay is the trigger of the transfer of energy from the #ow to the
structure (Dielen & Ruscheweyh 1995; Granger & De Langre 1995; Granger & PamKdoussis
1996; Knisely & Kawagoe 1988). This problem mainly concerns the vibration of tube
arrays, where the spacing ratio is often smaller than the one encountered in electric power
lines or cables.

The reduced frequency is assumed to be small and the oscillation amplitudes are assumed
to be within the linear elastic range of the structures. Moreover, such oscillations are mainly
in the cross-#ow direction so that some models neglect the longitudinal movement.

A quasi-steady method is based on steady tests in which the aerodynamic coe$cients of
the tubes are measured in di!erent positions and are used in a model which is solved
numerically. These experiments are easy to perform by comparison with unsteady tests.
However, the great disadvantage is that the dynamic e!ect on the coe$cients is missing
because they are measured on motionless tubes, whereas in reality they move. The com-
putational model must compensate for this, which means that unsteady e!ects need to be
introduced.

Granger & PamKdoussis (1996) have suggested such an improvement of the quasi-
steady model: they used an impulsive function of the cylinder motion to develop what
they called a quasi-unsteady model where very few empirical parameters have to
be determined through dynamic tests. Their model is considered as a generalization of
the Price & PamKdoussis (1984) model which introduces the time lag in an intuitive
manner.

Indeed, the so-called Price & PamKdoussis model is an interesting way to obtain good
qualitative results by comparison with experiments. This model assumes that the behaviour
of a tube can be described by the dynamics equations

mxK (t)#2gumxR (t)#mu2x (t)"F
x
(x (t!q), y (t!q), xR (t), yR (t)),

myK (t)#2gumyR (t)#mu2y(t)"F
y
(x(t!q), y(t!q), xR (t), yR (t)), (2)

where x and y denote the along-wind and cross-wind displacements of the tube and F
x
and

F
y

are the corresponding components of the aeroelastic force which is a function of the
displacement and of the velocity of the cylinder. When the tube moves, the aeroelastic force
changes with a little time lag q, because the viscous #ow is not restored instantaneously. In
fact, this time lag is a key element of the model because it is impossible to simulate an
instability without it, even when oscillations are observed experimentally. The Price
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& PamKdoussis model assumes that the time lag is a characteristic time scale of the #ow and is
given by

q"k
D

<
, (3)

where k is a dimensionless parameter close to 1. However, this expression is rather simple
and di$cult to link with a time response of the #ow. Moreover, it was experimentally shown
(Dielen & Ruscheweyh 1995) that q depends on the tube position during its oscillations,
which is not reproduced in expression (3).

The main purpose of the present paper is to suggest an improvement to the formu-
lation of the time lag by avoiding empirical parameters such as k. The object of this
study was initially aimed at heat exchangers. The external #uid is assumed to be air so that
added mass e!ects are neglected. The tubes must be able to withstand thermal expansion
e!ects and are therefore mounted very #exibly which makes them very sensitive to
vibrations.

First, a presentation of a quasi-steady model is given. This model is then applied to
the cases of two cylinders in tandem and an in-line tube bundle (see Figure 2).
The description of a new expression for the time lag follows. Some results of the experi-
mental study performed on "xed rigid tubes are then given and used as input to the present
model for numerical predictions. Comparisons are made with available unsteady experi-
mental results and the quasi-steady assumption is replaced in the context of the present
model.
Figure 2. Sketch of the two cases studied: (a) two cylinders in tandem; (b) in-line tube bundle.



2. THE QUASI-STEADY MODEL
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2.1. PRESENTATION OF THE MODEL

The model presented, initially shown in HeHmon (1997), is based on the assumption that the
steady aerodynamic force coe$cients are known for di!erent positions of the tubes through
experiments or numerical predictions. In the present case, the distance ¸ between the tubes
is equal to 3 times their diameter D. Zdravkovich (1987) made a extensive review of the
di!erent possibilities of oscillations in many con"gurations and presents a possible proxim-
ity and wake galloping instability for the present case (¸/D"3).

An important point in a pure quasi-steady theory is the fact that the dynamics of the #ow
due to the cylinder movement are neglected. Though experimental studies (Chen 1987)
show that the oscillating leeward cylinder drags the wake of the windward cylinder
(Figure 3), the assumption is obviously valid when the displacement of the tube remains
small and it is used for the present model.

The main purpose of the modelling is to reproduce the movement dependence of the
aeroelastic force, i.e. the force must depend on the displacement (x, y) and on the velocity
(xR , yR ). A very convenient simpli"cation, especially for experiments, is to consider once again
limited amplitudes of oscillation so as to reduce the displacement (x, y) to the angle b

p
, as

de"ned in Figure 4. This angle is given by

tanb
p
"

y

¸#x
, (4)

and is denoted as the yaw angle of the axis joining the two tubes. Though the sketch of
Figure 4 neglects the along-wind displacement for the sake of clarity, expressions (4)}(6) are
for the two-degree-of-freedom case. We now have the aerodynamic force coe$cients as
a function of the angle b

p
instead of position (x, y). The aeroelastic force can then be
Figure 4. De"nition of angles and velocities.

Figure 3. Wake dragged by the movement of the downstream cylinder.
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expressed in a general form by
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since the viscous stress component is neglected for such blu! bodies. The drag and lift
force coe$cients depend on the relative yaw angle b

a
(see Figure 4) which is de"ned with the
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due to the oscillation velocity of the tube. In order to complete the
model,
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This model is quite complex because it takes into account (i) the tube displacement referred
to the upstream cylinder, which e!ectively creates large force variations, and (ii) the relative
wind velocity which introduces a coupling with the velocity of the structure.

For the remainder of this paper, the along-wind displacement will be neglected. The
unsteady experiments that are used for the validation of the model considered only a single
degree of freedom. In that particular case, the along-wind degree of freedom was not found
to be of great importance, but the extension to other applications, especially with larger
cylinder spacing ratios, should not be restricted to the cross-#ow movement.

The geometrical approximation made by equation (4) introduces an error, *y, on the
displacement y: this increases when the angle b increases and when ¸ decreases. For an
angle of 18)43, corresponding to a cross-#ow displacement of one diameter, the error in the
displacement reaches 5)1% of the diameter. For the linearized model of the aeroelastic force,
the corresponding error is doubled.

Furthermore, it is possible to add the e!ect of the displacement of the upstream tube by
modifying expression (4). If we assume that the movements of the tubes occur out of phase,
then one can write
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where (x
u
, y

u
) denotes the displacement of the upstream tube. However, this relationship will

not be used in the present paper since it depends strongly on tube spacing and on the
assumption of an out-of-phase movement.

2.2. LINEAR ANALYSIS OF THE DYNAMICAL SYSTEM

For cross-#ow vibrations, the critical velocity can be estimated by linearizing the model and
by making an energy balance over a period ¹ of the movement, assuming that it is periodic,
with an angular velocity u. We use the expansion of the force to the "rst order,
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where subscript 0 refers to functions evaluated for the equilibrium position (y
0
, yR

0
). It is

convenient to use a steady equilibrium position such that yR
0
"0, which is compatible with

the quasi-steady assumption. This expansion is introduced into the dynamics equation (2)
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to make the energy balance over a period, such that
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where E
C

and E
p
are the kinetic and potential energies, respectively. The balance introduces

two nonconservative components DE
S

and DE
d

related to aerodynamic sti!ness and
damping, respectively. When the energy balance is positive, an instability can occur. If it is
negative, the dynamical system is stable. It is important to note here that if the time lag is
neglected, the sti!ness term becomes nil and an instability can appear only through
aerodynamic damping.

We then assume that the movement is sinusoidal,

y(t)"y
M

sin(ut), (10)

and we can integrate the nonconservative terms. After calculations and the introduction of
the force derivatives, the equilibrium position being the perfectly aligned tube (y

0
"0), one

obtains
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where f
r
is the reduced frequency and q

r
the reduced time lag (see Appendix 2). The critical

velocity is de"ned as the velocity which makes the system unstable, i.e. when the energy
balance becomes positive.

These expressions show qualitatively that, knowing that the lift gradient in a tandem
arrangement is positive, the damping part of the energy balance cannot lead to instability.
This can only happen when the term sin(2n f

r
/q

r
) becomes positive. Blevins (1990) reported

that the time lag is of the order of the Strouhal number, and we temporarily take this value.
Also see Figure 1 for clarifying references to the reduced frequency. One concludes that

(i) when f
r
is close to St (also to q

r
), the sinus term is close to zero and no instability can

occur;
(ii) when f

r
decreases (the velocity increases) down to 1

2
q
r
, the sinus term is negative again

and the system remains stable;
(iii) if the velocity further increases, one reaches the region where f

r
(1

2
q
r
, the sinus term

becomes positive and an instability can develop as observed in experiments.
These conclusions were drawn on the basis that the time lag was taken to be constant,

which in reality is not the case. An expression of the time lag introducing a dependence on
the velocity of the #ow will be given in the third part of this paper. However, the above
linear analysis leads to a useful estimation of the critical velocity.
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2.3. CRITICAL VELOCITY ESTIMATION

Starting from expressions (11), we obtain an implicit solution of the critical velocity, which
is easily solved by any numerical procedure:
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where subscript cr refers to critical values and Sc is the Scruton number. The critical velocity
appears to be a function of the square root of the Scruton number, which is a well-known
result. We do not make any assumption concerning the sign of the gradient of the lift force,
but the solution is supposed to exist and the component under the square-root is assumed
positive.

It is therefore quite di$cult to compare this expression with the one given by Dielen
& Ruscheweyh (1995), because they assumed a negative gradient of the lift force. In fact, as
shown in Figure 5, the lift force has a positive slope when the cylinders are in alignment
(except for tube 4 of the bundle studied), and a negative slope when they are staggered. In
the latter case, if we consider an equilibrium position di!erent from the alignment, i.e. y

0
is

not zero, the expression obtained is much more complex:
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Henceforth in this paper we shall consider only in-line tubes.
From expression (11) we have seen that the existence of an instability is also a function of

the value of the time lag which has not been detailed yet. The single criterion of instability
based on the gradient of the lift force is shown to be insu$cient. The classical de"nition
initially derived by Den Hartog (1934), of a stable system given by a positive slope, and an
unstable one by negative gradient, is clearly wrong in the case of aligned tubes, because the
time lag e!ects calls into question the quasi-steady assumption.

3. THE IMPROVED TIME LAG CALCULATION

The time lag is the delay between the aeroelastic force and the displacement of the tube
generating it. This is the time taken by the #ow to adapt itself to the new con"guration
induced by the movement of the tube.

In this model, the displacement of the tube is obtained with reference to the upstream
tube, using the angle b

p
. This upstream tube creates the interference which induces the lift

force variations on the downstream cylinder. However, as interference is not transmitted
instantaneously, there is an implicit time lag. Therefore, this delay should be understood as
a convection time of the mean #ow between tubes, i.e.

q"
¸

;
C

, (14)

where ;
C

is a convection velocity between the two tubes inside the wake of the upstream
tube. It is obvious that this velocity is not a constant if the downstream tube moves, because
it periodically goes in and out of the wake of the upstream cylinder. The region where this
movement occurs is characterised by a very high gradient of the mean velocity; in particular,
the moving tube regularly crosses the shear layer which is reinforced in the case of bundles.
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The #ow in such cases is so complex that it cannot be solved numerically, and an
experimental measurement of this velocity is not easy to perform because of the intrusion of
a velocity sensor. However, we have assumed that the force coe$cients of the tubes are
known as a function of the yaw angle and we can also assume that the force coe$cient
C

xM
of an isolated tube is known as a reference value.

An estimation of the mean velocity ;
C

can then be given with reference to the case of an
isolated cylinder, so that one has
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where the coe$cients C
x

and C
y

are the drag and lift coe$cients, respectively, of the
downstream tube. The great advantage of the calculation suggested here is that there is no
empirical coe$cient to adjust and there is not need for other data than those already
known.

4. EXPERIMENTAL STUDY

In order to validate the model, the two cases presented in Figure 2 were studied and
especially the case of two cylinders placed in tandem for which the results of unsteady
experiments are available (Bokaian & Geoola 1984).

The data which are necessary as input for the aeroelastic force model are the force
coe$cients versus the yaw angle. These data were obtained in a facility at the Institut AeH ro
Technique (IAT) adapted to high turbulence #ows such as those found in heat exchangers.
The square test-section has 0)6 m sides and the velocity can be varied from 5 to 40 m/s. The
turbulence intensity measured at the entrance to the test-section is 5%. The diameter of the
tubes was 40 mm and the Reynolds number of tests was 51 000, based on the upstream
velocity. For the bundle, the Reynolds number based on the velocity between two rows
reached 71 000.

Two high-frequency response pressure transducers (ENDEVCO) were #ush mounted at the
surface of two cylinder elements. Each of these could be moved to di!erent spanwise
positions of the two cylinders, thus allowing certain correlation measurements. The trans-
ducers were connected to appropriate electronic devices and to a high speed analog/digital
converter in a computer (PC). The data transferred to a Unix workstation for signal
processing and pressure integration. The experimental procedure was checked on an
isolated cylinder by comparison with well known results from the literature (pressure
distribution/C

xM
"1)271/St"0)190/span-wise correlation length of vortex shedding equal

to 3D).
Figure 5 presents the steady lift coe$cients of the three tubes studied, obtained through

integration of the pressure measurements. The curves have been smoothed using a least-
squares method. Figures 6}8 give some typical pressure pro"les obtained, in terms of the
mean pressure coe$cient and its standard deviation. The position on the circumference of
the tube is given by the angle h subtended at the centre of the circle relative to the stagnation
point with the clockwise direction positive. The peaks of the #uctuating values are mainly
due to the vortex shedding which was investigated more particularly for the two cylinder
case.

The Strouhal number versus the yaw angle for this con"guration is given in Figure 9.
This is the same for both tubes and it was shown that the alternate shedding is exactly in
phase when the tubes are in alignment. The downstream tube is strongly subjected to the
vortices which are shed by the upstream cylinder (see b"0 at h"453 in Figure 6) and



Figure 5. Lift coe$cient versus yaw angle.

Figure 6. Pressure coe$cient for the downstream tube of the two cylinder case: (a) mean value; (b) standard
deviation.
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Figure 7. Pressure coe$cient for tube 2 of the in-line bundle: (a) mean value; (b) standard deviation.

Figure 8. Pressure coe$cient for tube 4 of the in-line bundle: (a) mean value; (b) standard deviation.
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Figure 9. Strouhal number and reduced time lag for the case of two cylinders downstream tube.
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weakly a!ected by its own shedding (at h"1203). When the tubes are yawed at about 203,
the shedding is no longer correlated and the Strouhal number returns to the value for the
isolated cylinder. Note that for a spacing ratio (¸/D) of 3 the downstream tube comes out of
the shadow of the upstream cylinder at a yaw angle of 18)43.

The interesting point here is that the Strouhal number is related to the convection
velocity of the alternate vortices. In particular, in the tandem position of the two
cylinders, the Strouhal number if 0)165, which also corresponds to the value of the reduced
time lag when it is calculated with equations (14) and (15), as reported in Figure 9. This
coincidence has not yet been explained, but it is close to our physical intuition of the
phenomenon.

Concerning the bundle, an almost constant Strouhal number between 0)23 and 0)24 was
found inside the bundle, whatever the yaw angle. This value is similar to that given by the
empirical relation of Weaver mentioned in Chen (1987) which, in the present case, gives
a value of 0)25.

5. RESULTS OF NUMERICAL PREDICTIONS

The numerical predictions are carried out by solving equation (2) with the "nite-di!erence
scheme given in Appendix 1, which is chosen for its good accuracy and properties in terms
of numerical damping and phase error.

The main results are given in Figure 10; the maximum amplitude reached is normalised
relative to the diameter and plotted versus the reduced velocity. The Scruton number of the
computations is 0)1706, corresponding to a very low structural damping. Experimental
results of Bokaian & Geoola (1984) for a similar case of two cylinders are also plotted. The
vortex-shedding excitation obtained in the experiments is not predicted by the computa-
tions since this phenomenon is not included in the model.

In the case of two cylinders, the galloping instability of the downstream tube shows good
agreement between predictions and experimental results, and in particular the critical
velocity is very well predicted by equation (12). Tube 2 of the bundle, which has a similar lift
force variation (see Figure 5), has a higher critical velocity and about the same amplitude of



Figure 10. Amplitude of vibrations computed and comparison with experiments of Bokaian & Geoola (1984).
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oscillations. On the other hand, tube 4 which is located far inside the bundle has a very
di!erent lift force and is not subject to galloping instability for the cases studied.

If we come back to the two-cylinder case, we observe limit-cycle amplitudes of the
same order of magnitude in the experiments as in the computations. These amplitudes
are of about half a diameter, in the range of the validity of the model. The agreement is
less accurate than for the critical velocity and an e!ect of the Reynolds number is
suspected here since it is not the same, varying from 2900 to 5800 in the experiments.
This point is not completely clear. However, the agreement is quite good, and an analysis
of the limit cycles is interesting in order to understand the dynamic behaviour of the
system.

Typical detailed results are given in Figure 11. The phase plane [Figure 11(a)] of the
movement shows a single loop, whereas the power spectrum of the displacement
[Figure 11(b)] gives odd harmonic components of the fundamental frequency. This behav-
iour is due to the symmetry of the system studied, where the equilibrium position at yaw
angle zero is a symmetrical centre. When we look at the hysteresis curve of the lift force
[Figure 11(c)], we can see a large central loop which is circumscribed clockwise, i.e. there is
a gain of energy, and two lateral loops that correspond to a loss of energy since they go
anticlockwise. This type of force}displacement diagram is typical of the behaviour of
interference galloping and shows the in#uence of the nonlinear aerodynamic damping
which limits the amplitude of oscillations.

6. A DISCUSSION OF THE QUASI-STEADY ASSUMPTION

In the sense taken here, the quasi-steady assumption means that the steady aerodynamic
coe$cients used in the calculation are measured independently from the fact that the
structure moves in the #ow "eld. This assumption is therefore independent of the time lag
concept and only implies that the #uid velocity is large enough for it not to detect the
motion of the structure. Such a condition is classically given by the low-frequency



Figure 11. Limit cycle analysis for the case of two cylinders. (a) phase plan, (b) power spectrum of the
displacement, (c) force}displacement diagram. Computation at <

r
"29.
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assumption, i.e.
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However, in the case of tube arrays, the motion considered is in the cross-#ow direction,
with a mean amplitude yR @ (root-mean-square of yR ) and a mean #ow velocity ;

C
for the

downstream cylinder. If we assume a sinusoidal movement such as in equation (10), then the
low reduced frequency assumption can be written as

yR @
;
C

+

4n fy
M

J2<
@1, (17)

where it has been assumed that ;
C

is close to 1
2
<, which is valid for our case because

;
C
<

"

¸

D
q
r

(18)

by de"nition, and q
r
"0)166 as in Figure 9. This value of ;

C
should be corrected for other

values of tube spacing ratio: in particular, small ¸/D ratios may lead to much smaller values
of ;

C
. The main consequence is that the low reduced frequency assumption, as understood

here, cannot be valid when the tube spacing ratio is too small.
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The other limitation to the assumption is given by the motion amplitude that should
not be too high. Nevertheless, the numerical application to this study of relation (17) gives,
for an amplitude y

M
equal to half a diameter, a value of 0)22 which is signi"cantly smaller

than 1.
Another point related to the conventional quasi-steady theory is the fact that the

suggested time lag depends on the #ow velocity. It introduces into the aeroelastic force
model a dependence on the reduced frequency, even for linearized terms. This is not the case
for the pure quasi-steady theory. Nevertheless, it is not easy to make a direct link between
the present model and others such as Simpson's (Simiu & Scanlan 1986), though their
physical behaviour seems to be similar on this particular point.

7. CONCLUSION

An improvement is suggested to the time-delayed quasi-steady model for the prediction of
vibrations of aligned tubes. A physical interpretation of the time lag leads to a new
expression based on static force coe$cients. There is no empirical coe$cient to adjust and
the model is very convenient to use. The critical velocity is also deduced and comparison
with available experimental results shows very good agreement with the present model.

An analysis of the limit cycles shows that the nonlinear behaviour of the dynamical
system is similar to a Van der Pol oscillator with amplitudes of oscillation limited by
nonlinear damping.

The model has a range of validity which can be summarized in two main points: (i) the
low reduced frequency condition is given by inequality (17), which also implies limited
amplitudes of oscillation; (ii) the tube spacing ratio cannot be too small a validation was
given for ¸/D"3; it seems possible to increase the distance but more di$cult to decrease it.

An extension of this model was suggested in Bourdeix et al. (1997) to take into account
the longitudinal displacement and the 3-D e!ects in a simpli"ed manner. A few points
remain unclear, especially the coincidence between the Strouhal number and the reduced
time lag. Besides, the Reynolds number e!ect has not been investigated su$ciently. It would
also be interesting to study the e!ect of the movement of upstream tubes, mainly in the case
of a bundle which in fact represents the industrial application of this work.
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APPENDIX 1: THE NUMERICAL SCHEME

This scheme was "rst suggested by De Vogelaere (1955) and then improved by Fu (1970). The original
scheme is adapted here is order to obtain a predictor-corrector algorithm. The aim is to solve an
expression of the form xK#cxR "G(t, x, xR ).

Initial values:

G
0
"G (t
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, x
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, xR
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x
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0
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, xR
0
),

xR
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1
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Prediction half time step:
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Correction half time step:

x
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2
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¹ime step:

x
n`1

"x
n
#DtxR

n
#

Dt2

6
(G*

n
#2G

n`1@2
!c (xR

n
#2xR

n`1@2
)),

G*
n`1

"G(t
n`1

, x
n`1

, xR
n`1@2

),

xR
n`1

"

6

6#cDt AxR n#
Dt

6
(G*

n`1
#4G

n`1@2
#G*

n
!c(4xR

n`1@2
#xR

n
))B.

This fourth-order scheme has a stability condition Dtu)2J2 studied by Wu & Witner (1973). It has
no numerical damping and the phase error is at least of order 4.

APPENDIX 2: NOMENCLATURE

C
p
"P!P

!5.
/Q mean pressure coe$cient

C@
p

#uctuating pressure coe$cient
C

x
"F

x
/DQ drag force coe$cient

C
y
"F

y
/DQ lift force coe$cient

D tube diameter (m)
f frequency of the structure (Hz)
f
r
"f D/< reduced frequency

f
v

frequency of vortex shedding (Hz)
F
x
, F

y
aerodynamic forces of x- and y-axis (N/m)

¸ tube spacing (m)
m mass per unit length (kg/m)
P pressure (Pa)
P
!5.

atmospheric pressure (Pa)
Q"1

2
o<2 dynamic pressure (Pa)

Re"<D/l Reynolds number
Sc"2gm/oD2 Scruton number
St"f

v
D/< Strouhal number

t time (s)
;
C

convection velocity (m/s)
< upstream #ow velocity (m/s)
<

r
"</ f D"1/ f

r
reduced velocity

y tube displacement (m)
b yaw angle (deg)
g reduced damping (refered to critical damping)
l kinematic viscosity (m2/s)
o #uid density (kg/m3)
q time lag (s)
q
r
"D/q< reduced time lag

u"2nf angular velocity (rad/s)

Subscripts
a related to relative velocity
P related to position
0 related to an equilibrium position
' denotes time derivative
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